728x90
반응형

Computer Vision 6

Data Augmentation - boost classifier

가짜 데이터의 유용함 머신러닝 모델의 성능을 향상시키는 가장 좋은 방법은 더 많은 데이터로 훈련하는 것입니다. 모델이 더 많은 예제로 학습할 수록 이미지 속 차이점이나 중요한 것, 중요하지 않은 것을 잘 찾을 수 있습니다. 그렇게 모델이 새로운 데이터에서도 잘 분류하여 일반화되죠. 데이터를 더 얹는 방법 중 쉬운 방법은 가지고 있는 데이터를 사용하는 것입니다. 분류의 기준을 그대로 지키면서 가지고 있는 데이터를 변형할 수 있다면 그러한 변형을 무시할 수 있는 분류기로 성장시킬 수 있습니다. 예로 자동차의 좌측면과 우측면 사진은 보기엔 다르지만 자동차이지, 트럭이 될 수 없습니다. 그러므로 이런 뒤집힌 사진을 training data에 더해주어(augment) 분류기에게 왼쪽과 오른쪽의 차이점은 무시할 수..

Custom Convnets (Convolutional Blocks)

Simple to Refined 지난 세 수업에서 convnet이 feature extraction을 수행하는 과정을 보았습니다. 그 과정은 filter, detect, condense 연산을 차례대로 거쳐가는 것입니다. feature extraction의 한 라운드는 단순한 선이나 대비와 같은 이미지에서 비교적 간단한 feature만 추출할 수 있습니다. 수많은 분류 문제를 해결하기에 너무 간단하죠. 대신에 convnets은 이러한 추출과정을 여러번 반복합니다. 그로 인해 feature는 좀 더 복잡해지고, 더 깊은 네트워크를 여행하며 정교해집니다. Convolutional Blocks 추출을 해주는 convolutional block들의 긴 사슬을 통과하면서 진행됩니다. convolutional bl..

The Sliding Window

하나의 이미지로부터 특징을 추출하는 3가지 연산에 대해서 배워보았습니다. filter with a convolution layer detect with ReLU activation condense with a maximum pooling layer convolution과 pooling 연산은 같은 특징을 공유합니다. 둘 다 sliding window 위에서 수행하기 때문입니다. convolution에서는 이 window는 커널의 차원인 kernel_size 매개변수에 의해 결정됩니다. pooling에서는 pool_size에 의해 pooling window가 결정됩니다. convolution과 pooling 레이어 모두에게 영향을 주는 두 개의 매개변수가 있습니다. window의 strides 매개변수는 ..

Maximum Pooling - feature extraction

!!여기서 활성화 activation의 의미란, 이미지 행렬 안의 숫자값이 0이 아니고 색깔이나 의미를 가진 0 외의 숫자로 되어있다는 의미. 0이 있는 곳은 검은색으로 표시됨 이번 시간에는 convnet 속 base이 feature extraction을 수행하는 방법에 대해 보려 합니다. 이전까지 feature extraction에는 conv2d layer와 relu activation으로 2가지 과정이 일어난다고 했습니다. 이번에는 세번째 연산 과정을 보려합니다. maximum pooling을 이용한 압축(condense)입니다. 이는 케라스의 MaxPool2D layer에서 일어납니다. Condense with Maximum Pooling from tensorflow import keras from..

Convolution and ReLU

이전 시간에 convolutional classifier에는 convolutional base와 dense layer로 구성된 head가 있다고 배웠습니다. base는 이미지에서 시각적 특징을 추출하며 head는 이를 이용해 이미지를 분류합니다. 이번에는 base에 사용되는 두 종류의 layer를 배워보려 합니다. 하나는 ReLU activation을 적용한 convolutional layer이고, 다른 하나는 maximum pooling layer 입니다. 5번째 수업에서 특징 추출을 수행하는 단계에 사용되는 이러한 레이어들로 구성된 자신만의 convnet을 설계하는 법에 대해서 배울 예정입니다. 이번 시간은 ReLU activation을 적용한 convolutional layer만 보겠습니다. Fea..

Convolutional Classifier

Introduction of Computer Vision Keras로 만든 image classifier에 현대 딥러닝 네트워크를 사용합니다 자신만의 custom convnet을 설계해봅니다. Visual feature extraction 속 아이디어를 배워봅니다. model의 속도를 올리기 위해 transfer learning을 배워봅니다. data augmentation을 적용하여 dataset을 확장시켜 봅니다. 이 수업의 목표는 신경망이 자연 세계의 이미지를 어떻게 이해하는지 그 방법을 배우는 것입니다. 이는 사람이 시각적으로 처리하는 체계뱡식과 유사합니다. Convolutional Neural Networks (CNN or Convnet) 저마다 다른 구조의 convnet으로 된 레이어들을 반환..

728x90
반응형