지금까지 neural network로 'regression problems'를 어떻게 해결할 수 있는 배웠습니다. 이제 머신러닝의 또다른 골칫거리, 바로 'Classification'을 neural network에 적용해봅시다. 가장 큰 차이점은 우리가 사용했던 loss function에서, 그리고 마지막 layer에서 나온 출력값의 종류에서 찾을 수 있습니다. (저게 차이점이 아니야!) Binary Classification 두 그룹(class) 중 하나로 분류하는 것은 일반적인 머신러닝 기법입니다. 고객이 구매할 가능성이 있는지, 신용 카드 거래가 사기였는지, 우주에서 온 신호가 새로운 행성의 증거가 되는지 등, 모두 "Binary Calssification" 문제입니다. raw data에서 이 같은..