1. Random Forest 특징 - 수많은 trees를 이용. 예측정확성이 single decision tree일 때보다 좋음 - parameter에 매우 민감. - 최대 트리 사이즈에 대해서 민감하지 않고 항상 좋은 예측을 하기에 좋음. 그 model은 single decision tree보다는 훨씬 나은 성능을 보여줍니다. 수많은 decision tree에 대해서 예측을 한 뒤 평균을 계산하니깐요. +) Intermediate Machine Learning: XGBoost - Introduction 참고 - wakaranaiyo.tistory.com/17 2. 예제 from sklearn.ensemble import RandomForestRegressor from sklearn.metrics im..