Evaluating: 내가 만든 모델의 예측 정확성(predictive accuracy) 확인하기, 즉 모델의 퀄리티 요약하기 1. Evaluating의 한 가지 방법: MAE (Mean Absolute Error) 평균절대오차 error = actual - predicted from sklearn.metrics import mean_absolute_error predicted_data_y = data_model.predict(X) mean_absolute_error(y, predicted_data_y) 2. In-Sample Score의 문제점 -> 이 방법 쓰지 말자 In-Sample Score: train data로 predict을 하고 train data의 target data, 즉 목표값과 비교..